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Evolution of a modulated K P  soliton 

Russell L Herman 
Department of Mathematical Sciences, University of North Carolina a t  Wilmington, 
WiLnington, NC 28403-3297, USA 

Received 15 May 1990 

Abstract .  We investigate the propagation of an initial profile consisting of a planar 
KP soliton with some small modulations. Using the solution of the Cauchy problem 
for the linearized KP equation, we find that for large times the modulations move 
away from the peak of the profile, leaving behind a stable soliton. A generalization of 
this method is formulated for the study of the stability of solutions of other integrable 
equations. 

1. Introduction 

Washimi and l'aniuti (1966) derived the Korteweg-deVries (KdV) equation as the 
equation governing the propagation of small-amplitude ion-acoustic waves in one di- 
mension, using the reductive perturbation technique. Nine years later Kako and Row- 
lands (1976) applied these methods to the study of two-dimensional perturbations. In 
their paper they derived the Kadomtsev-Petviashvili equation as a twedimensional 
generalization of the KdV equation. This equation was first introduced by Kadomtsev 
and Petviashvili (1970) in the study of the stability of transverse perturbations of the 
KdV equation. 

The K P  equation takes the form 

(ut + 6uu, + U,,,), + auYy = 0. (1) 

u(z ,y , l )  = 2k2sech2(kz+L'y-wt) (2) 

I t  possesses the one-soliton solution 

with the dispersion relation 

oez 
w = 4k2 + - 

k 

There have been numerous experimental investigations of the evolution of these 
two-dimensional ion-acoustic solitons (Gab1 et  Q /  1984, Lonngren 1983, Lonngren el 
al 1983). These experiments are performed by placing various grids, which are made 
from a wire mesh, into a carefully prepared plasma region. By applying a voltage 
across the grid, a density perturbation is created, which depends on the geometry of 
the wire mesh. At distances far from the grid, the plasma fluid equations can be used, 
as the hypotheses for this model are satisfied. 
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To get a planar KP soliton, a rectangular uniform mesh is used. Chang (1986), 
Chang et  a/ (1986) .wrinkled the mesh before inserting it into the plasma device. They 
observed that initially the amplitude of the profile was irregular; however, at  distances 
far from the grid, i.e. for longer times, they found the profile was independent of the 
launching structure, and looked like an undisturbed planar soliton. 

The authors sought to understand this behaviour through both analytical and nu- 
merical work. Numerically, they integrated the K P  equation, using a planar soliton 
with a modulated phase as an initial condition. In the numerical result, the modula- 
tions were seen to be damped out, which supported the experimental results. 

To understand these results analytically, Chang et  Q/ (1986) turn to an analysis 
that is similar to that of Kadomtsev and Petviashvili, which we review in appendix 1. 
They found that for u(x,y, t )  = 2kzsechzk(z-~o(y,t))  the phase xo obeys an equation 
valid to third order, 

(3) XOft - axoyy + PZO,,,  = 0 

where oi and P are positive constants. They stated without proof that an approximate 
solution to this equation is of the form 

xo Y e-T'f(y o i l 4 )  (4) 

displaying the decay sought by these researchers. 
However, there is a problem in using singular perturbation theory for the current 

problem, as we explain in appendix 1. In the above analyses it was assumed that the 
amplitude and width of the soliton did not vary in the transverse direction. To the 
order being considered, we show that this implies 

from the results of the perturbation theory. Therefore, xo must be of the form 

z0 = ayZ + by + c (6) 

which is not sufficient for studying variations far from y = 0, as one needs for the 
current problem. 

We will reformulate the problem, not as a problem in singular perturbation theory, 
but as a Cauchy problem for the KP equation. The best approach would be to apply 
the inverse scattering method (Ablowitz et  a/ 1983, Fokas and Ablowitz 1983) to this 
problem; however, the only type of initial conditions that can be used in this method 
are those which go to zero as xz + yz - CO. We instead convert the problem to a 
Cauchy problem for the linearized KP equation, following the work of Burtsev (1985). 
We will then show how the modulations evolve for large times. 

We will end this paper by discussing a general approach to studying the stability 
of solutions of the KP equation. The solutions, which can be handled by Burtsev's 
method, are essentially KdV solutions and are not as interesting as many of the new 
types of solutions, which have been found recently for the KP equation, as well as 
other twedimensional integrable evolution equations (Boiti el al 1988). 
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2. Cauchy problem for the linearized KP equat ion 

We are faced with the following problem: given an initial condition close to the planar 
soliton 

uo(t = 0) = 2v2sech2vz (7) 

how will it evolve in time, assuming that its evolution is governed by the KP equation 
in the form 

(ut + 6uu, + U,,,), + 3P2uYy = O? 

u(t = 0) = A,sech2(+ + e&) A, = 2v2 = v x  (9) 

(8) 

We will assume that the initial condition takes the form 

where e is a small parameter. We expand the initial condition in a Taylor series 

u(t = 0) = A,v + eA,&v+ + O(f2) v sech24 (10) 

u = U, + eul + O(ez) = 2vzsech2v(z - 4v2t) +ml. 

and we expand u about the one-soliton solution: 

(11) 

Inserting this into the KP equation, we find that we can pose the problem as an initial 
value problem for the linearized KdV equation: 

Thus, we only need to solve a linear Cauchy problem. 

prime. This leads to the equation 
In the following we will transform the z variable to z’ = z - 4v2t and drop the 

(ult  - 4v2u1, + 6(uoui), + %zrz)r + 3P2ulYy = 0. (13) 

Burtsev (1985) solved this problem. In his analysis he studied the large-time 
behaviour of the Green function G(z‘ ,p;z , t )  for z’ = z = 0 and p / v 2  < 1, where 
p is the associated spectral variable involved in a Fourier transform with respect to 
y. He found that the solution is described by weakly damped soliton oscillations. 
In the following we follow Burtsev’s analysis for setting up the solution to (13) and 
examine the initial condition with d,(y) = eiuY. However, the current study differs 
from Burtsev’s in that we do not restrict the analysis by throwing away contributions 
for I’ # 0 and limiting ourselves to the long transverse modes p / v 2  < 1. We obtain the 
solution to the Cauchy problem for the linearized K P  equation and study the large-l 
behaviour for arbitrary p / g  and look at the evolution of the initial modulations as 
they propagate away from the soliton peak. 
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We first note that a solution to the linearized KP equation can be given by Burtsev 
(1985) 

11 2u 
dx [ [ (u-ik)(l  +eZ"") x -  (v-in)( l  + e 2 ~ " )  
d - - ,-int+ipv - 
dx 

2U - i n f t i p y  - e i ( k t n ) =  1 - u , ( z , y , t ) = e  

[$(k, z)ll(n, 211 (14) 

provided 

- i n  = 4i[n3 + k3 + v2(n + k)] (15) 
(16) 

2 2  i p p = n  - k .  

Here $ ( k , z )  is a Jost solution for the Schrodinger equation, $" + (k2 + uo)$ = 0. 

sev introduces a parameter I, defined by 
From the relation (16) only two of the parameters (n, k,p) are independent. Burt- 

(17) 

(18) 

(15) and (16) we to get rid of the third parameter. Inserting P ant 
have 

and 

16r 

rmation ii 

The general solution is a linear combination of these solutions: 

where the integral over z must be done with care about the essential singularity z = 0. 
Here r(z ,p)  is a generalized Fourier coefficient, which is to he determined. 

The initial condition can now be used to obtain the function r(r ,p) .  Defining the 
Fourier transform of the initial condition by 

1 m  
"l(",P,O) = - / eCiPyu(x,y,O)dy Jz;; -m 

then evaluating (20) at  t = 0, and Fourier transforming with respect to y, we have 
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Now we need to  get r(z,p) out from under the integral sign. This can be done by 
using an orthogonality relation. Defining 

W , P , Z )  d ( k , z ) $ ( n , z )  (23) 

and 

from the functions defined in (14), Burtsev proves the orthogonality relation 

m 

(@(z)l*(-z')) @(z,p,z)B(-z ' ,p,z)dz = 2'6(z - 2 ' ) .  (25) Lm 
Thus, multiplying both sides of (22) by " ( - 2 )  and integrating with respect to z, one 
obtains 

Thus, the general solution to  the Cauchy problem for the linearized KP equation (13) 
is found to  be 

U - 1 Jm $ -1 dp(u,(z',p,0)~1(--2,p,z'))@(z,p,z)e-in'+iP~ 
1 - 6  -m 

3. Behaviour of the peak,  z = 0 

At this point we will deviate from the analysis which Burtsev provides. However, 
there will later be some similarities in the types of integrals, which we will have to  
compute. Burtsev rewrites ihe soiuiion (27) in a form which defines the appropriate 
Green function: 

m 

u l ( z , p , t )  = 1, ul(i ' ,p,O)G(z' ,p;z, t)dz'  (28) 

where the Green function is given by 

For the rest of the paper Burtsev computes the asymptotic behaviour of this Green 
function as t + 00, for the special case of 2: = 0, the soliton peak, and for x' = 0. In 
his analysis, he restricts his attention to  the approximation p/u2 (< 1, but states that 
the results can be easily generalized to  arbitrary values of these parameters. In the 
following we will not make all of these restrictions. For simplicity we first will focus 
our attention on the behaviour of the soliton peak, z = 0, and reserve the study of 
general z for the next section. 
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We consider a specific initial condition, which corresponds to a modulation of the 
phase in (10). Namely, we will let +l(y) = eiWy. Then from equations (9) and (10) we 
will solve the linearized K P  equation (13) subject to the condition 

ul(z,y,O) = Aoe'"Y(sech2r$)4 A, = 2w2 r$ = ux. (30) 

From equation (21) we compute the Fourier transform of this initial condition as 

c. ul(x,p,O) = t r z ~ ~ , 8 ( p - ~ j ( s e c h ~ r $ j ~  (3i j 

Noting that for z + -2, we have (k,n)  -+ (-k,-n),  then we can compute 
(u(x',p,O)lQ(-z,w,z')) to obtain 

(32) 
&A,irrp26(p - U )  

4u3(w + ik)(w + in)sinh(nz/u)' 
( ~ ~ ( z ' , p , o ) ~ ~ ~ ( - z , w , z ' j )  = - 

Writing @(z ,w ,z )  as 

and evaiuating ul at  the peak, x = U, we have 

2ir(kn + w 2 )  
(U - ik)(w - in) '  

@(z,w,O) = - (34) 

Putting all of this into equation (27), then for z = 0 we have the solution for this 
par?ic"!ar initiz! vz!??e pmb!em z!ong the peak of the so!iton 

We now want to study the integral in (35) for large times. We define this integral 
as 

The approach that we now take will be to study the pole structure of the integrand 
and use a stationary phase analysis to determine the appropriate contours to use in 
the comp!ex z-p!me. 

First, we note that for t  > 0, we want to close the contour in the UHP (upper-half 
r-plane). We must first require %(-io) < 0. Letting z = z t  iy in (19), we find that 

16 x2  t y2 
3w2 ) t 8 i z ( - 3 y 2 + z + w 2 - - -  2 - 3 2  t yz - w - -- 
16 z2 + y2 

thus, we must require 



Evolution of a modulated l i p  soliton 1167 

x 

Figure 1. Complex I-plane. 

In figure 1 we have sketched the regions defined by (38). We need to find a contour in 
the upper-half plane, which lies between the z-axis and the upper curve, E(-iQ) = 0. 
The point at which this curve crosses the y-axis, (O,y,,), is given by 

(39) y; = +[U2 + (U4 + p 3 2 ) 112 1. 

Now, we turn to the poles. From the sinh factor in the integrand in the integral 
in (36), we have an infinite number of poles lying on the imaginary axis: 

z = f imv m = 0 , 1 , 2  , . . . .  (40) 

Of these, only a finite number will contribute to the integral, as only a few of these 
will lie in the allowed region (38) for y > 0. From the definitions of k and n,  we find 
that the only pole a t  z = 0 is from the sinh factor. However, we will later show that 
this is really not a pole, due to the 1/z factor in the definition of Q. 

The other poles come from k = f iu ,  and n = fiu. Using the relations (17) and 
( le) ,  we have 

k = f i u  + z - i w / 4 z = f i u  

n = f i u  + z+iw/4z = f i u  

which can be solved to give 

k = f i u  : 

n = f i u  : 

z = &+[iuF (iw - Y 2 ) 1 1 2  ] 

z = &+[iv+ (-iw - u 2 ) 112  ] 

Thus, we have a total of eight poles from these contributions, half of which will lie in 
the upper-half plane. 

We now need to choose a convenient closed contour for which we can study the 
large-t behaviour. Following Burtsev, we now look at the stationary phase points. 
Once we find these, we can then require the contour to pass through them, and will 
be able to evaluate the behaviour along the contour using the method of steepest 
descents. 

We obtain the saddle points zj from f’(zj) = 0, where 
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Figure 2. Location of pole  and stationary phase points for y < 2/3. 

Thus, we need to solve the equation 
3w2 

16 
32; + 2 2 ;  + c = 0 c - 

obtaining the four saddle points 
(44) 

Here we have defined m by m = $ ( j  - j mod 2). 
Now that we know where the saddle points are, we have to find the paths of 

steepest descent. This is done in detail in appendix 2. The results depend on the 
parameter y = w / u 2 .  

If 7 < 213, then we find that the extrema1 paths are given by 
m+j even 

a = ( Z p + l ) - - - =  (p = 0 , l )  (A2.15) m+j odd 
where B is defined as 

A m+j even 
0 m+j odd. 

(A2.14) 

Using this information, the following table is constructed where we denote ‘-1’ as 
a steepest descent path, and ‘+l’ as the steepest ascent path, which we must avoid. 

Table 1. Paths for y < 5. 

1 0 +1 -1 UHP 

2 1 +1 -1 LHP 
3 1 -1 +1 UHP 
4 2 -1 +1 LHP 

In figure 2 we show a sketch of the complex z-plane with the critical points for 
y = 0.5. The poles for k = f i  are denoted by crosses (not on the axis), and the poles 
Corresponding to n = &i are denoted by open circles. The poles from the sinh are 
given by small crosses along the imaginary axis, of which only three appear in this 
figure. Finally, the stationary points are dentoted by small full circles. In this figure 
two of these have horizontal lines through them, indicating the direction of steepest 
descent, where the long line denotes the steepest descent curve for this problem. These 
stationary phase points are obtained from z1 and z3 in the above table. 
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With this information we can choose the line parallel to  the real axis, going through 
the upper stationary point in the UHP. To close the contour we connect this line a t  
infinity to the real axis. Using this contour to  evaluate the integral, we find that only 
two poles are enclosed by the contour. We can add up these contributions using the 
calculus of residues, and evaluate the asymptotic behaviour of the integral along the 
steepest descent line using the method of stationary phase. 

The paths of steepest descent for the case 7 > 213 are given by 

+4j + PT 
T4j + (2P+ ')I 

Pj = 0 
Pj = 1 a =  { 1 

where bj is the phase of the stationary point z j ,  p = 0,1, and 

0 
1 

zj in quadrants I, I11 
zj in quadrants 11, IV 

(A2.22) 

(A2.19) 

We show in figure 3, for y => 2/3 a sketch of the complex z-plane with the poles 
and stationary points marked. The poles are indicated as before. The major feature, 
which is different, is the location of the stationary phase points and the direction of 
steepest descent. These four points are indicated by a small circle, with the steepest 
descent direction indicated on the points in the upper-half plane. The curve, which 
has to  be added to  close the contour, now goes through two stationary phase points. 
As 7 increases, there are more poles included inside the closed contour. In order to  
investigate the general behaviour of the integral (36), we will compute the effect of each 
pole as if i t  were inside the contour. Since we are only interested in the general features 
of this problem, we will not worry about how to add up all of these contributions, since 
the sum of these contributions for arbitrary w / v 2  is quite different. 

) x  

. 

Figure 3. Location of poles and stationary ph- pointr for 7 > 2/3. 

We are now ready to  consider the integral given in equation (36) 
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In order to obtain the pole contributions from k = f i v ,  we look a t  equations (15) and 
(16) 

- i n  = 4i[n3 + k3 + u2(k + n)] iw = n 2 2  - k 

and equations (17) and (18): 

Inserting k = f i u  in the first set of equations, we find 

iw = n2 + u2 - i n  = -4wn. (47) 

Adding the second set of equations for k and n,  and then solving for n, gives 

n = 22, iu. (48) 

From this information we easily find the residues due to these poles, if they are enclosed 
by the contour: 

2nzn 
2aiRes[z = z ] - ’ - w sinh(azk/v) 

In a similar fashion, we can compute the residue for the zeros of n = f iu:  

2s2, 
2riRes[z = z,] = - 

w sinh(az,/v) 

(49) 

From the argument of the exponential, we have 

- io(zk)  = -4wwn(rk) - in(z,) = 4wk(z,). (51) 

Since we have already guaranteed that %(-in) < 0, we have that any of these pole 
contributions would lead to damped oscillations, if they are inside the contour. 

The other poles, which could possibly arise, are from the sinh(az/u) factor. If 
these poles are enclosed in the contour, there would he a finite number. For m = 0, 
we have a slightly more complicated contribution from each m. We evaluate the factors 
in the integrand: 

2 w2 kn + u2 = (1 - m)u - - 
16m2v2 
W W 2  n2 + u2 = (1 - m2)u + i- + - 
4 16u2m2 

.w W 2  
k2 + u2 = (1 - m2)u - I -  + __ 

4 16u2m2 

3 3 3 2 3w2 - i n = i ( v  m - u  m --). 16mu 



Evolution of a modulated RP solilon 1171 

Using the L’Hopital rule we find 

(53) 
v v Y 

7r 
= (-l)m-. ~ i m  ( ’vim’ ) = lim ( 

& - m u  sinh(nz/v) z-tmu ncosh(az/u) 

The important factor, of course, is the behaviour of -iRt. As can be seen, this is 
real and negative, if in the allowed region, %(-in) < 0. Thus, these poles lead t o  a 
co~tribuiian which iz dsmped, and does net have any osci!!atory piece. 

The last point to check is z = 0. This point is a zero of the sinh factor; however, 
we see that as z -+ 0 

kn + U’ 
(kz + vz)(nz + vz)sinh(ar/v) - 

!gz:,(!gz2:,2 + 1gz4 + .4) 
-0 

7 r ( l 6 ~ ~ v *  + 16z4 - 8iwz2 - w2)(l6zZvz + 1624 + 8iwzz - w z )  

(54) 

So, z = 0 is not really a pole. We still must be careful near this point, because of the 
1/z term i n  -iRt. If we go around z = 0 in a small semicircle of radius p above the 
origin, and let the radius go to zero, we find 

0 
Io E lim 1, dOg(p,B)exp[8it(p3e3’@ + vZpe’@ - $w2e-”)] 

P- 0 

However, g ( p ,  0) vanishes in this limit, and the exponential can be written as 

exp[-(3w2t/p)(sin e + i cos e)]. 

Since t > 0 and sin B > 0, then a.s p - 0, the integrand tends to  zero. Therefore, there 
is no contribution from this point. 

From t h e  Cauchy integral theorem, the integral we desire can be written as 

We still have to  get the contribution from the contours. As 121 - CO, for %(-io) < 
0, the two extreme contours a t  infinity vanish, as the integrand goes to zero there. 
The only contour integral left to  evaluate is the steepest descent contour. From the 
standard results of the method of steepest descents, for large t this integral is given 
by (Bleistein and Handelsman 1986, Whitham 1974) 

I = g(zo),/-exp[-iR(io)t + io1 f ( z )  - i ~ )  (56) 

where z,, denotes the stationary phase point. In our analysis, we have obtained these 
points and the direction a. In fact, there are two such points on our contour, when 
y > $, so we must add both of these contributions. We have from (43) 

f ( r )  = Si(z3 + v2z - 3wz/16z) (57) 
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and 

f"(z) = 8i(6r - 2 c / z 3 ) .  (58) 

So, the contribution from this contour consists of one, or two, terms of the form 

This completes the analysis of the initial value problem to first order in c. We 
have found that all the contributions to the first-order solutions are damped. The 
important contributions are due to the poles, as the stationary phase points behave 
as 

t-$e-i"lt 0, q s t  phase pt) 

while the poles due to the k = f iv ,  n = f i v  lead to damped oscillations of the form 

,-i%t R, G R(pole) 

In fact, since we have a relation between the zeros of these two equations, z ,  = - z l ,  
the damped oscillations can be shown to be of the form 

A(zk)e-i"(zh)t + ~ * ( ~ ~ ) ~ - i f l * ( z k ) l  (60) 

when these zeros have a positive imaginary part less than one. In this case the de- 
caying oscillations are travelling in opposite directions, but damping at the same rate. 
Burtsev (1985) has also obtained the same general features for the asymptotic be- 
haviour of the restricted, 7 << l ,  Green function, as discussed at  the beginning of this 
section. 

4. Behaviour for general z 

Having obtained the asymptotic behaviour of the peak of the soliton for large times, 
we can now look at more general values of x. The general methods are basically the 
same as above. We start with the solution which was obtained in equation (27) as 

Inserting the result for the inner product (u(x',p,O)lq(-z,p,z')), we can rewrite this 
as 
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where we have defined f ( z )  by 

i f ( r ) = 8  

and H ( z )  by 

' (63) 
- 2 ~ '  tanh3 4 + 4ivz tanh2 4 + 2(v2 + 2r2)  tanh 4 - 2ir(kn + u2) /u  

( k 2  + u2)(n2 + G)sinh(ar /u)  
H ( z )  = 

We now study the behaviour of the above integral for large t ,  keeping z / t  fixed. 
This will give results describing the long time behaviour of waves travelling a t  the 
same velocity z/ t .  In particular, we define the velocity V = z / 4 t  and we look for 
the stationary phase points again. Comparing if(r) in equation (62) with -iO(z) in 
equation (19) 

- i Q = 8  

we see that the analysis of the stationary phase points in the present case is the same 
as we had already encountered. By replacing u2 by V in the previous results, we have 
the same four stationary phase points: 

(64) 
w 9 2 1/2 
V '  + ( - l ) m + l ( I  - ay ) 

Only the scaling of zj is changed, and the stationary phase directions can be shown 
to be unaffected. 

In the previous analysis we also had to require that !J?(-iO) < 0. Here we require 
$?(if(.)) < 0. For this we have 

$?(- i f )=8y(-3zz+y2-v---  3wz 16 z2 + y2 ) < o  z = z + i y .  

This results in the same sketch as before, where 

y,' = [a(. + (V2 + 9 w 2 ) 1 / 2 ] .  (66) 

We see that as V = v2 is changed, the boundary $?(if) = 0 will move, as well as the 
stationary phase points. 

We can now deal with the poles. The poles in (61) are exactly the same as before. 
Therefore, there will be different pole contributions for waves moving a t  significantly 
different speeds, since there may be more or less poles enclosed by the contour, whose 
location depends on V .  These poles are given by 

z = f imu for sinh(ar/v) = 0 
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The only possible difference is that z = 0 may become a new pole. In the denom- 
inator of H ( z )  in equation (63) we have as z tends to 0 that 

7rw4 (ha + u Z ) ( n 2 + ~ Z ) s i n h ( ~ ~ / v )  -+ - 
256vz2 

In the numerator we have, as z - 0, 

- 2vz tanh3 4 + 4ivz tanhZ4 + 2(vz + 22') tanh 4 - 2iz(kn + v z ) / v  - 
Therefore, H ( z )  in (61) behaves as 

(69) 
iwz 
8uz 

(70) 
3% 

T W Z  

So, z is not a pole in this more general case, either. 

of the solution in (61) takes the form 

H ( z )  - --2 - 0 as z + o .  

Putting this information together as before, we find that the asymptotic behaviour 

where 

3t 
23 

f"(z) = -(16z4 -U') 

(72) 

(73) 

the first sum being over the poles, and the second sum being over the stationary phase 
points. 

Since %(if) < 0, we see that each term will decay exponentially for fixed V .  As 
f"(z) is linear in t ,  the contributions due to the stationary phase points will not 
last as long as those from the poles. The longest remaining terms will be due to 
those poles closest to the real axis in the z-plane. These will either be the poles 
from k = f i v , n  = f iv ,  or from z = imv. As for the result for the soliton peak, 
where V = v2, we use the fact that the k = f i v  and n = f i u  poles are related 
by z, = -2;. Inserting into u1 leads to the propagation of oscillations in opposite 
directions. Uowever, for w/v' greater than some critical value, the contribution from 
the pole z = iv will begin to dominate the solution. 

For large enough times we can ignore the contribution from the stationary phase 
points. Investigating the solution for the z-dependence, we see that u1 can be written 
in the form 
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So, we would expect to see a complicated superposition of oscillations along the z 
direction. The form of equation (74) can be plotted, in order to examine the effects 
of this contribution at  various times. In figure 4 we plot the initial condition for the 
values 

A o = 2  w = 5  v = l .  (75) 

!E figires 5-8 -e plot pirts ofthe i p p r o x h a k  so!~!ion in (74)1 so t,hat we can see 
how some of the fluctuations in figure 4 propagate away from the centre of the soliton. 
In the later figures, we see how these oscillations move out and a secondary wanefmnt 
follows. In time a stable planar soliton is left behind, much in the same way as the 
numerical simulations of Chang (1986) and Chang et al (1986) had appeared. 

Figure 4. Initid modulated planar soliton ( t  = 0) 

Figure 5. Evolution of modulations due to the pole P = i accordng to equation 
(74) for A.  = 2 ,w = 5.v = 1 at t = 0.2. 

Figure 6. Evolution of modulations at t = 0.3 
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Figure 7. Evolution of modulations at t = 0.4. 

t = 0.5 

Figure 8. Evolution of modulations at t = 0.5. 

5. Stability of other KP solutions 

In the previous sections we had seen how the solution ofthe linearized KP equation (12) 
could be found by writing the solution as a linear combination of the basis states in 
(14). The unknown expansion coefficients, r ( z , p ) ,  could then be determined through 
the use of the initial condition and some orthogonality relations with the adjoint set. 

The type of solution considered w a s  of a special form. Namely, it was independent 
of y. Such solutions are essentially onedimensional solutions. In recent investigations 
localized solutions of twedimensional evolution equations have been found, which 
deacy exponentially in all directions (Boiti e2 a /  1988, Fokas and Santini 1989, Hi- 
etarinta 1990). In this section we would like to propose a method for analysing the 
stability of such solutions. We will do this by drawing a parallel to the method used 
in section 2. 

We first consider finding the eigenstates of the linearized I<P operator in equation 
(12). I t  is well known that the KdV equation (Ablowitz and Segur 1981) 

ut + 6uu, + ucxx = 0 (76) 

is a consistency condition for the Lax pair 
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Differentiating this with respect to 2, and using equation (77), yields 

(8, + s a , u + a , ) ( c l ( n , z , l ) ~ ( k , ~ , t ) ) ,  = -3(n2 - k2)2$(.,z,t)$(k,~,t). (80) 

Note that these functions differ slightly from those defined in equation (14), a8 the 
time dependence has been incorporated into these functions. 

Now, the operator for the linearized KP equation is of the form 

L: = 8,(8, + 6a,u, + 8,”) + 3p2ai (81) 

W , y , t ; n , k )  = eiPY8,($(n,z,t)$(k, z , t ) )  (82) 

C n ( z , y , t ; n , k )  = -3[p2pz + ( n 2  - P ) ] n ( z , y , t ; n , t ) .  

where uo is a solution of the KdV equation (76). Defining the functions 

we find that 

(83) 

Therefore, the functions O(Z, y, t ;  n, k) are eigenfunctions for the operator C. 
In the previous analysis these eigenfunctions were used to determine the solution of 

the Cauchy problem for the linearized KP equation. The solution was expanded in this 
basis, using unknown expansion coefficients. These coefficients were then determined 
by using certain orthogonality relations with the adjoint eigenfunctions. We now turn 
to the linearized K P  equation, where uo can depend on y. 

In the general case we need the Lax pair, which is associated with the K P  equation 
(Ablowits et al 1983, F o h  and Ablowitz 1983). The I<P equation is a consistency 
condition for the pair of equations 

my + $$ + uo(2, Y,t)$ = 0 (84) 

(85) $i + 4$=== + 6uo$, + 3 ( uoZ - P 1: uoydy‘) $ + a$ = 0. 

Here a is an arbitrary constant. We define 4(z,y,t) as the solution of the adjoint 
problem, which can obtained from equations (84) and (85) by letting p - -p. Using 
these equations, we find that 

C($4), = -24$4L. (86) 

Again, we have found a set of eigenfunctions of the linearized KP operator. By 
choosing the solutions $(z, y , t )  and 4(z ,y , t )  to satisfy certain boundary conditions 
as IzI - 03, then the value of a can be fixed, depending only on A.  If we can show that 
these eigenfunctions form a complete set and if we can obtain orthogonality relations 
between these functions and the corresponding adjoint set, then we can express the 
solution of the linearized KP equation as a linear combination of these states and solve 
for the expansion coefficients. 

In general, we can obtain the solutions of the above Lax pair, by employing the 
inverse scattering formalism for this system. However, as has been noted in the lit- 
erature, this involves the use of the so-called 8 problem (Ablowitz et nl  1983, Fokas 
and Ablowitz 1983, 1984). Work is currently under way to use this method for the KP 
and the Davey-Stewartson equations. 
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Finally, this method has been used t o  study perturbations of equations in one 
dimension, through the use of a direct approach (Herman 1988, 199Oa, b). In this 
type of an application we are interested in solving the inhomogeneous problem 

c u  = 3. (87) 
Here C is the linearized evolution operator and 3 is a driving term, resulting from the 
perturbation expansion. In the general method the eigenfunctions of the linearized 

pair (Herman 1988). In this new Lax pair the time evolution equation is the linearized 
evolution equation, while associated spectral problem is related to  the recursion oper- 
ator, which generates the non-Lie point symmetries of the integrable equation (Fokas 
and Santini 1986, Herman 199Ob). Using an expansion over the solutions of the new 
Lax pair, one can find the first-order correction ul as well as any changes in the shape 
and velocity of the solution of the unperturbed equation. The spectral part of this 
pair can be used to  establish completeness and to provide the needed orthogonality 
relations for carrying out the method. Such a study has been started for the KP 
equation (Herman 1988) and results will be reported a t  a later date. 

-ner.+nrrmFn..n,i h . ,+h .-.. -1. ~ 4 -""" F ---" +:-" -F+h..--:-:--l T - T-.. 
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6. Summary 

We have investigated the evolution of a modulated, planar KP soliton. This was done 
using the solution of a Cauchy problem for the linearized KP equation. Namely, we 
expanded the modulated initial condition 

u(z, 0) = 2uzsech2(vz + e'"') 

U = uo + cul + O(z2) = 2u2secb2u(z - 4u2t) +cul .  

g l ( z , g )  = p. 0- JWY(sechzm\ Y ! +  

(88) 

(11) 

and the soiution to  the KP equation 

Inserting this into the KP equation, we have transformed the problem into solving a 
linearized K P  equation for ul(z ,  t ) ,  subject to  the initial condition 

" 0  A - - qPj2  -" 6 = L'Z. (3) 
Using the general solution t o  this problem (27), we found that 

We studied the asymptotic behaviour of this solution both at the peak (I = 0), and 
for general values of z. Using these results, we have found that the initial modulations 
in the planar soliton decay, leaving behind a stable soliton. As the modulations decay, 
they tend to  propagate away from the centre of the soliton with smaller secondary 
wavefonts following. Similar results have been seen in numerical experiments (Chaug 
1986, Chang et  a l  1986). 

Finally, we have sketched a method for dealing with the stability of other solutions 
of the KP equation, as well as other integrable equations. This method relies on 
being able to  obtain a new Lax pair for the equation under study, whose spectral 
and time evolution operators are the recursion operator and linearized time evolution 
operator,repectively. Applications of this general method to stablity and perturbation 
analyses are currently under way. The details will be reported a t  a later time. 
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Appendix 1. Failure of singular perturbation t h e o r y  

In this section we review the original perturbation study of Kadomtsev and Petviashvili 
(1970). The authors turn their attention to the equation 

uf + 6uu, + uzrz = Q, (Al . l )  

where 'py is a small transverse correction to the KdV equation. The dependence on U 
of this particular term was determined as follows. Assume that U is a two-dimensional 
wave with a small amplitude, U = exp(-iwt + ilc. v), and a small wavelength in the 
z-direction. For this wave, moving at  a velocity c in the x-direction, the oscillation 
frequency is given by 

c ki  
2 kz 

w = F(kc - k,c) = ~ c ( \ / k , y  + k2 - k,) Y ?-- (A1.2) 

where the upper (lower) sign refers to negative (positive) dispersion. 

Thus, we find 
For this small-amplitude wave, the second and third terms in (Al . l )  can be ignored. 

2 c .  k, 
'p, E -iwu E ?-]U- 

2 k, 

implying 

C C 
1pS= cz f - k 2 u -  7-uYv 

2 ' -  2 

From this the relation between U and 'p is 

(A1.3) 

In view of this we can rewrite equation (Al . l )  as 

C 
m s 4 -  (A1.4) 2 (uf + 6uu, + u.~,), + muyy = 0 

which is a familiar form of the so-called KP equation. (Note, in this discussion of the 
KP paper, we have adapted their equations to our notation and conventions, so that 
future comparisons can be easily made.) 

We now sketch the perturbation analysis that Kadomtsev and Petviashvili used. 
Assuming that the transverse phase oscillation is very small, they solve equation (Al . l )  
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by introducing the new variable 4 = q( t ) (z  - xo(t, y)) to replace x in (Al.l) ,  and by 
assuming that q, and zo are slowly varying parameters. Rewriting the derivatives as 

equation (Al . l )  becomes 

( 3 v 2  + l13UQ4)Q = vy -ut .  

Adding -4q3u9 to both sides, and expanding U as 

U = uo + C U I  + E2U2 + . . . uo = 2q2sech24 z 2q2u 

they obtain in the first two orders 

7?(-4u0+-$+u,,,) 3u2 = o  
Q 

(A1.5) 

(A1.6) 

ll3 (-4u, + 12UlU + u,J+ = 27?(x0, - 49?)UQ -4oq , [u  + ++UQ] + py. 
The first is essentially a KdV equation with the one-soliton solution 

(A1.7) 

uo = 2q%. 

In the second equation, (A1.7), they assume that the last two terms are of higher 
order. Then the first-order equation in E is given by 

73 (-4u1 + 12u1u + U I Q Q ) +  = 2$(xor - 47?)UQ (A1.8) 

whose solution is given by 

U 1  = +(X0, - 4q2)(u + +4um,. (A1.9) 

u1 can be made to vanish by choosing the time dependence of the phase as 

zot = 40 2 . (A1.lO) 

Now the second-order equation is 

73 (-4u, + 12u2u + ?AZQQ) = -47/1)1[u + +4"J i- 2aq 2 xoyyu. (Al .  11) 

Multiplying both sides of this equation by sech24 and integrating over 4 yields the 
condition 

Q 

'~t = $moYy. (Al.  12) 

The conditions (A1.lO) and (A1.12) can then be combined to give 

zo,, = TV 16 2 axoyy.  (A1.13) 
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This equation indicates that for a < 0 (positive dispersion) solitary waves are 
unstable in the presence of transverse perturbations. For LI > 0 (negative dispersion) 
there are oscillations in the phase. Kadomtsev and Petviashvili noted that,  in going 
to third order, i t  is found that these oscillations are damped. 

However, implicit in this discussion is that  to this order it was assumed that 

qy = 0. (A1.14) 

Differentiating (A1.12) with respect to y and using (A1.14), we find 

=oyyy = 0. 

The solutions for the phase must be of the form 

( A l .  15) 

I ,,- - a 2  Y + b y + c .  (A 1.16) 

In the case that q is a constant, the solutions to (A1.13) are oscillatory (for a > 0). 
This could be true for sufficiently small y, as (A1.16) could represent a series expansion 
about y = 0. It certainly is not adequate for studying the modulations in this paper. 

This problem is not only present in the Kadomtsev-Petviashvili formulation. In 
the anaiysis presented by Chang (1986) and Chang et al (1986) they had arrived at  
equations (Al.lO), (A1.12) and (A1.13) before going on to third order. So the same 
problem is present in their study. 

A p p e n d i x  2. Steepest descent directions 

Now that we have the saddle points in (45), we need to determine the direction of 
steepest descent. We look near the saddle points at points i, such that 

i - z .  = 6ei0 (A2.1) 

l~here  b > 0 is $=a!! a d  Q is eens?an?. !nser?ing this i~ (42) and Tay!or expanding 
about z3, we find that 

3 

A .  3 -  = f ( i )  - f(zj) = 2i6'e2'"(3zj - C / z j )  + O(6'). (A2.2) 

If we can write this in the form 

A .  3 = + O(6') a > 0 (A2.3) 

then in the direction of steepest descent A, is real and negative (Bleistein and Han- 
delsman 1986). Thus 

e +  2a  = (2p+ 1 ) ~  p =  o , i .  (A2.4) 

Similarly, the path of steepest ascent is given for A, real and positive (Bleistein and 
Handelsman 1986). Therefore, the direction of steepest ascent is obtained from 

e + 2 0 = 2 p r  p = o , i .  (A2.5) 
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Now, all we have to do is to rewrite 

2iS2(3zj - C/z,") 

as neie. 
In order to make the computations a little easier, we note that in computing the 

poles and the saddle points, we have two parameters to work with: w and U. If we 
rescale z as z = uz',  which could have been done hack in (17) and (18), we find that 
we need only one parameter, which we define as y = U/$. The p o l e  now take the 
form 

z = k i m  sinh(?rz) = 0 

and the stationary points are given by 

(A2.6) 

(A2.7) 

Returning to the computation of the paths of steepest descent, we find that there 
are two cases. If 7 < 2, then the saddle points are purely imaginary, while for y > 2, 
they are complex. We investigate these two cases separately. 

For y < $, the zj are purely imaginary, so we can write 

z .  I = (-1)jtleix/z I Z j l .  (A2.8) 

Inserting this in (A2.2), we compute 

We need to know the sign of C - 31zjI4. In terms of C ,  we have 

l Z j l 4  = $[I+ ( - i ) m + 1 d i 7 Z q z  

= 3 2 -  1 2 c +  2 ( - 1 ) m + ! m E .  

Therefore, 

C - 31zjI4 = &[lZC - 1 - (-1)'"+'-q 
= ; [ ( - l ) ~ + l K i z -  (1 - 12C)l 

(A2.9) 

(A2.10) 
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For y < $ the term in the brackets is always positive. So, we have 

sgn(C - 31~~1') = (-1)"'. (A2.12) 

This gives for (A2.2) 

From (A2.3) we can read off 0 as 

T m + j  even 
0 m + j o d d .  

e =  [ 
Using 8, we find that the extrema1 paths are given by 

m + j even 
m + j o d d  

a = ( 2 p +  1)- - - = (P = 0,1) .  

(A2.14) 

(A2.15) 

We now turn to the second case, 7 > $. In  this case we again want to evaluate 
(A2.2). Writing z j  = Rjeioi, we find after some algebra that 

Thus, (A2.2) yields 

Using the identities 

COS 3dj = 4 cos3 +j - 3 COS 4j 

we have after some manipulation 

(A2.16) 

sin 34j = 3 sin 4j - 4 sin3 d j  (A2.17) 

(A2.18) 

We still need the sign of sin 4j cos 4 j ,  hut this just depends on which quadrant zj  is 
in. Defining Pj as 

0 
1 

zj  in quadrants I, I11 
zj in quadrants 11, IV p , =  

we can write 

(A2.19) 

(A2.20) 
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We have from (A2.3) 

The paths of steepest descent are then found from (A2.4) as 

(A2.21) 

(A2.22) 
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